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observed line shape for the Li6(i,a)He4 reaction was 
folded in to correct the theoretical curve for instru
mental resolution. The corrected theoretical line shape 
was then superimposed on the experimental curve, 
normalizing to the Li7(d,a)He5 peak. Since the cross 
section for a reaction is proportional to the integrated 
area under the experimental spectrum, the areas under 
the Li7(d,a)He5 peak and the Li6(d;a)He4 peak, cor
rected for abundance, were calculated. The known 
value for the cross section of Li6(d,a)He4 6 was then 
used to determine the cross section for the Li7(d,a) 
reaction. Figure 3 shows the cross sections determined 
in our laboratory along with the values of Fessenden 
and Maxden10 and Paul and Kohler.9 

A correction to the deuteron energy was made to 
account for deuteron energy loss in the thick target. 
An effective deuteron energy was obtained for each 
maximum energy by calculating the mean energy using 
the known excitation function for the Li6(J,a)He4 as a 
weighting function and assuming that all deuterons 
from zero to the maximum energy cause reactions. 
Assuming that the excitation function for the 
Li7(^,a)He5 reaction is similar to that for Li6(d,a)He4, 
effective energies were found. 

1. INTRODUCTION 

RECENTLY there has been considerable interest in 
the subject of configuration mixing effects in 

deuteron stripping, and in other single-nucleon transfer 
reactions.1-3 The present article presents some discus
sion of what these effects are, and of some circumstances 
under which they may or may not be important. 

What is under discussion is the recognition and re
moval of certain simplifying assumptions which are 
tacitly made when the usual theory is constructed. Both 
nuclear structure theory and the distorted-waves 
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The theoretical cross section for the formation of the 
compound nucleus Be9*, based on continuum theory, 
was calculated. This curve was then normalized to the 
experimental data at 175 keV. In Fig. 3 the experi
mental points show excellent agreement with the 
theoretical cross section given by the solid line. Since 
the experimental points did not fall away from the 
theoretical curve as energy increased, we conclude no 
other channels open, up to 300 keV. The data of Paul 
and Kohler at energies above the region of our experi
ment show evidence of the well-known resonances at 
800 to 1040 keV. 

CONCLUSIONS 

The differential cross section for the Li7(dya) reaction 
at 90 deg was determined by a relatively simple thick 
target method, using solid state detectors. The energy 
dependence of the cross section was found to agree 
with that for the formation of the compound nucleus, 
in the energy range 175-300 keV. 
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stripping theory rely heavily on the use of product wave 
functions for nuclear bound states. Each theory goes 
on to improve the wave functions; however, the sorts 
of improvements which they carry are different. For 
this reason there is some vagueness when the two 
theories are used together for practical calculations. 
Stripping calculations are very sensitive to shapes of 
radial wave functions; nuclear structure calculations 
usually ignore radial shapes, and concentrate instead 
upon building linear combinations of angular mo
mentum states. It is important for the reaction analysis 
that determination of a best linear combination for a 
bound-state wave function also implies determination 
of a best radial shape. It is this relationship which is 
generally overlooked, or which is treated very crudely. 

A sufficient illustration of the dynamics we wish to 
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The bound "single-particle wave function" into which the stripped particle is inserted is a true single-
particle wave function, in the shell-model sense, only if the target nucleus is a closed-shell nucleus. In all 
other cases the radial shape of this function is altered by configuration mixing effects, and important changes 
of cross-section magnitudes may ensue. These effects are discussed in the present article, and a detailed com
parison is given with the customary phenomenological procedure wherein the configuration mixing effects are 
estimated in terms of the Q of the reaction. 
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discuss is the (d,p) reaction among spinless "nucleons." 
Then in zero-range distorted-waves approximation, 
after having made all the customary simplifications of • 
the reaction mechanism, the amplitude for this strip
ping reaction takes the form 

r=constX J Xp^ttd^irdXD^Ktd&ri, (1) 

where 

W ( r i ) = /$jB*(ri,r2,r8,---) 

X$A(r2,rh--)d*r2dW-. (2) 

Here Xp
(-) and XD ( + ) are the distorted waves for the 

proton and deuteron, respectively. These functions are 
fully determined by the optical potentials and energies 
for the particles in question, and will receive no further 
discussion in the present paper. The wave functions $A 
and $B are the eigenfunctions for the target nucleus and 
product nucleus, respectively. To characterize these, 
say for $A, we introduce the binding energy EA, the 
angular momentum quantum numbers LA and MA, 
and any other necessary quantum numbers a^. Then 
the stripping amplitude makes use of the overlap £AB (r) 
between the two bound nuclear wave functions <&A and 
$B> The present paper concerns methods of construction 
of ^AB(T). Evidently this is a problem in nuclear struc
ture, and no very general solutions of this problem are 
to be expected. 

The function ^AB(Y) often is called the "wave function 
of the captured neutron." It is also known as the "form 
factor" of the reaction. Understanding of this form 
factor is gained by making appropriate series expansions 
of the wave functions 3>A and <£#. However, one expan
sion which it is interesting to consider first is the ex
pansion in angular momentum of &is(r) itself. Thus 

fcB(rHEifc*(l)(r). (3; 

Here LA+LB^I^ \LA—LB\ and the values of I are 
either all odd or all even, as governed by the parity of 
the transition. The expansion (3) has the well-known 
property that terms corresponding to different I yield 
contributions which do not interfere when the dif
ferential cross section is computed. Therefore, the cross 
section always separates into partial cross sections 
which are characterized by I. Often only one / value is 
important. In any case, we are free to concentrate at
tention upon a single I value. 

Authors usually consider that the partial form factor 
%AB(1) corresponds very closely to the wave function of 
the nearest single-particle state of the shell model, which 
has the angular momentum in question. If A is a closed-
shell nucleus this correspondence often is almost in
escapable. However, as the situation becomes more 
complicated we find two new effects: (a) The nearby 
state of angular momentum I becomes fragmented 
among several states $B of the residual nucleus having 

different energies and (b) distant single-particle states 
which have angular momentum / must be considered. 
In fact effects (a) and (b) are related, and this relation
ship affects the radial shapes of the partial form factors. 

We see in Eq. (1) that the radial shape of the partial 
form factor controls its overlap with the distorted 
waves. Because the distorted waves tend not to pene
trate to the nuclear interior, this overlap tends to be 
best at radii near and somewhat outside of the "nuclear 
surface" region, and we must construct %AB{1) which are 
as accurate as possible at such radii.4 There is some 
simplification because at asymptotically large radii the 
shape of %AB{1) is determined by the reaction Q, so that 
only the normalization must be found. Nevertheless 
experience5 with the integral of Eq. (1) shows that 
asymptotic radii do not dominate the overlap, so that 
the importance of Q must not be overstressed. 

Until recently most of the more accurate stripping 
calculations have constructed £AB™ as an eigenfunction 
in a single-particle (s.p.) well whose depth is adjusted 
to make the eigenenergy equal to (EB—EA), i.e., to fit 
the Q. By using this phenomenological procedure the 
asymptotic tail of the form factor is fitted to have a 
correct shape. If a given shell model state should be 
fragmented among several states <£#, then this pro
cedure for constructing form factors forces the various 
partial form factors to have different shapes. Evidently 
admixing of distant single-particle states, effects of 
type (b), is implied by this procedure. 

The present paper considers the question of how con
figuration splitting is related to the mixing in of distant 
states, and considers whether the phenomenological 
procedure which emphasizes the asymptotic tail of 
ZAB(1) does give a correct measure of the mixing which 
may be present. Other authors also are considering 
these questions,1-3 and have already found that cross 
sections found by fitting the form factor to (EB—EA) 
often are severalfold different from those found by 
ignoring any dependence on EB-

2. TWO EQUIVALENT NEUTRONS 

We analyze first the simplest of all configuration 
splitting problems, the one which describes nucleus B 
as having two interacting neutrons in the I shell. It will 
be seen how the interaction of the neutrons mixes into 
the wave function s.p. states from higher shells, and it 
will be seen that the phenomenological procedure which 
fits form factors to reaction Q values probably gives a 
reasonably good picture of this mixing. Criticism of this 
analysis will be deferred until Sec. 3. 

In the absence of interaction between the neutrons, 
each moves subject to the single-particle (s.p.) 
Hamiltonian 

h(i)=K(i)+U(i), (4) 

4 This is why Gaussian bound-state wave functions are danger-
ousrin reaction calculations. 

5 R. M. Drisko (private communication). 



C O N F I G U R A T I O N M I X I N G E F F E C T S I N S T R I P P I N G B 1745 

where K is the kinetic energy and U is the s.p. potential. 
The eigenfunctions of this h shall be written 

h<j)n= en<t>n, ( 5 ) 

^ = r ^ n ( r ) F i f f l ( r ) . (6) 

(Here, as henceforth, the quantum numbers l,m are 
suppressed except where they are needed explicitly. 
All s.p. wave functions used in this section will have 
angular momentum I.) 

Nucleus A is assumed to. have just one neutron out
side a closed shell; hence $A is a member of the set <j>n. 
For simplicity we suppose 

$ A = <£O, EA=eo. (7) 

Nucleus B has two interacting neutrons of angular 
momentum /; hence $B satisfies the Schrodinger 
equation 

{h(l)+h(2)+v(l,2)~EB}^B(l%EBLBMB) = 0, (8) 

where fl(l,2) is the interaction. Here the quantum 
numbers which label $B are indicated, but the coordi
nates ri, r2 are omitted. Evidently if $B is constructed 
from two particles having angular momentum I then it 
must be of the form 

®B = rrh^ws (ri)wB(r2) | I2, LBMB) . (9) 

The ket denotes the vector-coupled product of two 
spherical harmonics Yi. The two radial functions in 
Eq. (9) are identical because the neutrons are identical. 
(Antisymmetrization is accomplished by selecting 
either all odd values of LB, or all even values.) Evi
dently there is no reason why wB (r) of Eq. (9) should 
be the same as m(r) of the uncoupled problem. Further
more it must be expected that each different one of the 
states LB into which the P configuration splits will have 
a different radial function wB. 

In standard shell-model calculations the energies EBy 

belonging to each LB, are found by using uo for wB in 
Eq. (9) and calculating the expectation of the 
Hamiltonian operator. The result is 

EB « 2e0+ (00,LB | v 100,LB), (10) 

where | 0 0 , Z B ) denotes two functions <£o coupled up to 
angular momentum LB. Equation (10) uses the zero-
order wave function, as we expect for the energy in first-
order perturbation theory. However, stripping theory 
requires more accurate knowledge of the wave function 
WB (r). If this function is expressed as a series in the set 
tiny 

CO 

W B W = 2 a>BnUn(r) , (11) 
w=0 

then up to first order it is 

CO 

wB(r) = u0(r)+Y, (to—€»)_1«nW 

X(0n,LB\v\0Q,LB). (12) 

Here \0n,LB) denotes the coupling up to LB of two s.p. 
functions <£o and # n . 

The stripping form factor is found by inserting 
Eqs. (7) and (9) into Eq. (2). To first order the result is 

UBW(r)==r~'wB(r)Ylm(r), (13) 

where Eq. (12) is used for wi(r). Equation (13) will be 
regarded as the "exact" result, with which thephe-
nomenological procedure for constructing the form 
factor will be compared. 

Some interpretation of Eq. (12) is achieved if we 
view Eq. (9) as a trial wave function for a variational 
calculation of §B. The Euler-Lagrange equation which 
the function wB satisfies then is an elementary Hartree-
Fock equation, in which the self-consistent single-
particle potential depends upon the value of LB. The 
self-consistent s.p. potential in which a neutron moves 
then is found to be 

/

GO 

[wB{2)J 

X(l\LB\v(l,2)\P,LB)dr2. (14) 

The bra-ket expression indicates the angular integra
tions over the interaction v(l,2). The self-consistent 
potential changes as we go from one state to another of 
the split configuration. This change gives to the radial 
wave functions tails which are consistent with the 
eigenenergies EB) and controls other aspects of their 
radial shapes. Further application of the ideas that 
lead to Eq. (14) will be made in Sec. 3. 

The customary phenomenological approximation for 
?Asa)(r) may now be discussed and compared with the 
expression found above. This approximation makes use 
of EB, the measured energy of the state of the product 
nucleus which is formed. In the present analysis 
Eq. (10) is this "measured energy." Then in the phe
nomenological procedure the function used in Eq. (13) 
in place of wB(r) is wB'(r), and wB(r) is fitted to the 
measured energy. The procedure is governed by the 
equations 

*i/(r) = f - W ( r ) r , w , (15) 

A*W(r ) = ( E a - € o W ( r ) , (16) 

hB'^K+\BU=h+(\B-l)U, (17) 
so that 

^ n « r r V 2 - W ( r i ) « o ( r O \l\LBMB) . (18) 

I t is seen that the depth of the s.p. potential is adjusted 
so that the imitation s.p. state <j>B has an energy which 
is just sufficient to make up the measured energy EB 
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as a sum of s.p, energies. The interaction is not carried 
Then it is easy to solve for wB up to first order in the 
perturbation (\B—1)U and to substitute out X̂  in 
terms of EB. The result is 

XT,(to-en)-Kn\U\0)un(r). (19) 
7lr=l 

Equation (19) must be compared with Eq. (12) in 
order to assess the accuracy of the phenomenological 
procedure. 

Equations (12) and (19) would be exactly equivalent 
if the ratio 

(na,LB\v\OQ,LB)/(n\U\0) (20) 

were independent of n. In this circumstance the correc
tion to the s.p. potential in Eq. (17) would be of the 
same shape as the self-consistent correction term in 
Eq. (14). Evidently if the shapes of these two corrections 
should be the same, then the procedure of fitting to EB 

would guarantee a correct value of the over-all mag
nitude of the correction term in the wave function in 
Eq. (19). This analysis leads to two observations re
garding the accuracy of the phenomenological procedure. 
The first observation is an optimistic one, that at least 
the phenomenological procedure does not appear to give 
a grossly wrong estimate of the admixture in the wave 
function. The second observation concerns the de
ficiencies which are found if the procedure is studied 
more carefully. The correction term in Eq. (14) proba
bly has the shape of the s.p. wave function [j/o(r)]2, 
and is likely to be peaked at the nuclear surface. The 
correction term in Eq. (17), on the other hand, has the 
shape of the s.p. potential, U(r), itself. Thus the two 
corrections may well exhibit admixtures which differ in 
detail. 

3. DISCUSSION 

The elementary configuration splitting problem of 
Sec. 2, wherein nucleus B has just two interacting 
neutrons in the I shell, is a sufficient indicator of the 
physical effects which must be considered, to permit us 
to discuss all other cases by comparison with this case. 

What was found for the two-neutron case was that 
the phenomenological procedure of fitting the form 
factor to the reaction Q introduces into the single-
particle wave function about the same amount of ad
mixture of higher states as a nuclear structure calcula
tion had indicated to be present. The two methods may 
not give identical estimates for the shape of the ad
mixture, but this may be regarded, for the moment, as 
a secondary question. (Of course, the two shapes do 
agree identically at asymptotically large radii.) How
ever, the reason why the admixture in any one state $B 

could be tied to the energy shift for this state was that 
the coupling scheme for the state $B could be specified 

in advance of the calculation. As a result there was no 
more freedom in the nuclear structure calculation for 
two particles than there is in the model problem 
(particle+core), which is the dynamical basis of the 
phenomenological method. 

In general, the state &B may be expanded in a com
plete set of eigenstates of nucleus A coupled together 
with a complete set of s.p. states for particle 1. This is 
the parentage expansion: 

$B(EB,Q>BLBMB)= £ {<t>nl(l),$A>}LBMB 
A' ,n,l 

x C K ^ O ^ K ^ ] . (21) 
In the two-particle case the sum over A' and I collapses 
to only one term, and then the sum over n factors out 
as an alteration of only the radial function of cf>oi. This 
factorization yields the approximate agreement with 
the phenomenological method. 

If nucleus B has more than two particles outside the 
closed-shell core, then a state $B is likely to have a 
variety of parent states, having different A' and /, and 
the series (21) will have more than one term which is 
nonvanishing. As a result no factorization of §B is pos
sible, and the close relation between the stripping form 
factor and the energy of state §B is lost. Equation (2) 
prescribes how to calculate the form factor, and it is 

&u*(ri)= E </>nim(ri)(lLA,mMA\LBMB) 
n,l,m 

XL(nl,A)LB}aBLB-], (22) 

so that the partial form factor is 

(UB ( 0 (* I )= £ <t>nim(ri){lLA,mMA\LBMB) 
n,m 

Xl(nl,A)LB}aBLB-]. (23) 
Thus the partial form factor, which determines the 
stripping cross section for angular momentum transfer 
Z, is obtained from just one term of the complicated 
wave function <&B. The energy EB, on the other hand, is 
obtained only by use of all terms in the expansion (21) 
of $B. Indeed, cross terms are likely to be of special im
portance in calculating the energy. In this situation it 
is quite wrong to use the energy EB to measure the radial 
shape of only the one term, Eq. (23), which comes out 
of the expansion (21). In other words, as soon as the 
parentage expansion becomes nontrivial, the phenome
nological procedure becomes incorrect. 

Even the treatment of the two-particle problem was 
a little oversimplified, and this case is not quite so much 
easier than the many-particle problem as is suggested 
above. Correlation of the two nucleons actually mixes 
in with the product wave function of Eq. (9) terms built 
from s.p. states that have angular momenta different 
from /, and also terms in which the radial motions of the 
two particles are coupled. However, such effects 
probably lie entirely outside of a shell model context 
and must be disregarded in the present analysis. 
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What is of greatest interest is the question of how to 
construct form factors which are sufficiently accurate 
for practical stripping calculations. The phenomeno-
logical procedure of fitting an imitation single-particle 
state to the measured energy of <£B is at least straight
forward, and it does fit the shape of the asymptotic tail 
of the form factor. However, while variation of the value 
of EB to which we fit does not drastically affect the 
angular distribution which is predicted, it is known6 

that such variation affects the magnitude of the cross 
section by about 30% per 1-MeV change of EB- Thus 
if $B is a mixture of several terms, and we wish to use 
stripping theory to measure from experiment the 
amplitude with which each term appears, then un
certainty in the shape of the partial form factor for each 
term can lead to large uncertainty about its magnitude. 

No easy prescription for calculating radial shapes of 
form factors is possible, and this must instead be re
garded as a general subject of nuclear structure analysis. 
Probably no analysis will ever yield a reliable procedure 
for handling the small components of $B> For the major 
components of <£#, derived from one or two nearby 
shell-model configurations, the correct shape of each 
form factor probably lies somewhere between two 
extreme possibilities: either (a) the shape calculated in 
terms of EB by the phenomenological procedure or (b) 
the shape calculated from the energy of the unsplit 
configuration from which that component was derived. 
Of course procedure (b) would require a knowledge of 
"single-particle energies" before form factors could be 
computed. Because these energies are, in turn, derived 
from stripping experiments, a complete analysis of any 
one experiment would then require some juggling of 
these energies, in order to achieve self-consistency. 
Whether procedure (a) or procedure (b) is closer to the 
truth depends on whether the radial integration in 
Eq. (1) is dominated by values of ri which are largely 
outside the nucleus or whether contributions from a 
little inside the nucleus may be important. 

Some indication can be given of how to calculate im
proved form factors from a more basic point of view 
than just described. Equation (21) expresses <£B as a 
sum over A', n} and I. Normal nuclear structure calcu
lations do not carry the sum over n. What this sum 
expresses is the improvement of the shape of the single-
particle radial wave function that goes with each 
value of Af and I. Thus this sum is decisive for the cal
culation of partial form factors, as is seen in Eq. (23). 
However, it was observed earlier in the two-particle 
case [see Eq. (14)] that a correct radial wave function 

6 B. L. Cohen, R. E. Price, and S. Mayo, Nucl. Phys. 20, 370 
(1960). 
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could be computed directly, without any sum over n, 
by the artifice of constructing a self-consistent single-
particle potential in which the coupling of particle 1 
with the rest of the nucleus is incorporated. The self-
consistent potential may be constructed with sufficient 
accuracy with the use of only the shell-model wave 
function for <£#, in which the sum over n is omitted. 
Then the correct form factor is computed as an eigen-
function in the self-consistent potential. The generali
zation of this method for &B states that have more 
than two particles is straightforward. G. R. Satchler 
and W. T. Pinkston have been conducting some calcula
tions which employ this method.7 

The question of the proper determination of radial 
wave functions, the subject of this paper, comes up in 
many applications. The bound-state single-particle 
wave functions which are used for nuclear structure cal
culations are designed to be at their best in the nuclear 
interior, where interactions among nucleons are strong. 
These wave functions are not correct in the region of 
the nuclear surface, and must be improved if effects 
which take place in the surface region are to be calcu
lated. An interesting example in which such an im
provement is required comes up in the theory of the El 
giant resonance.8 After diagonalizing the shell-model 
Hamiltonian the final states formed by El absorption 
are found to lie in the continuum, and far above the 
energies of the unsplit shell-model configurations from 
which they are formed. In order to calculate the decay 
widths of these states it is necessary to improve their 
radial wave functions,9 in just the fashion discussed in 
the present article. Here again it might be satisfactory 
to find the decay widths by calculating single-particle 
states in a self-consistent s.p. potential which is adapted 
to the giant resonance. 
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